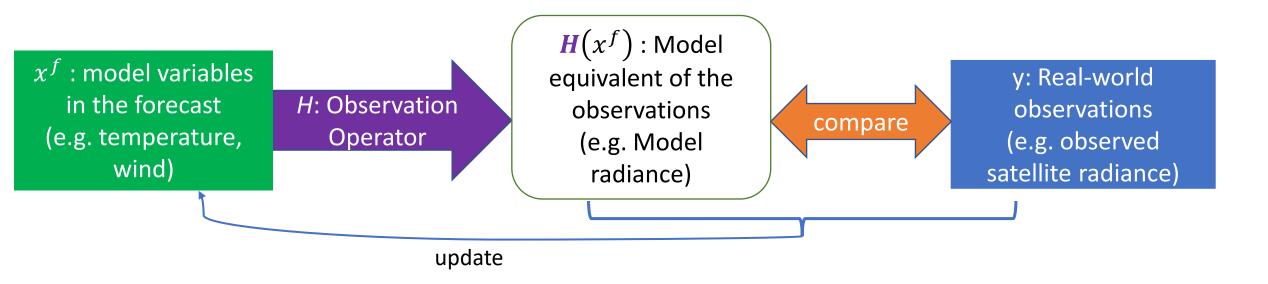
A Machine Learning Approach to the Observation Operator for Satellite Radiance Data Assimilation

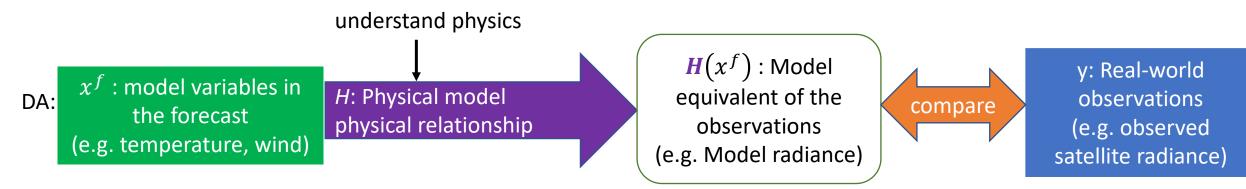
¹Jianyu Liang

^{1, 2} Koji Terasaki

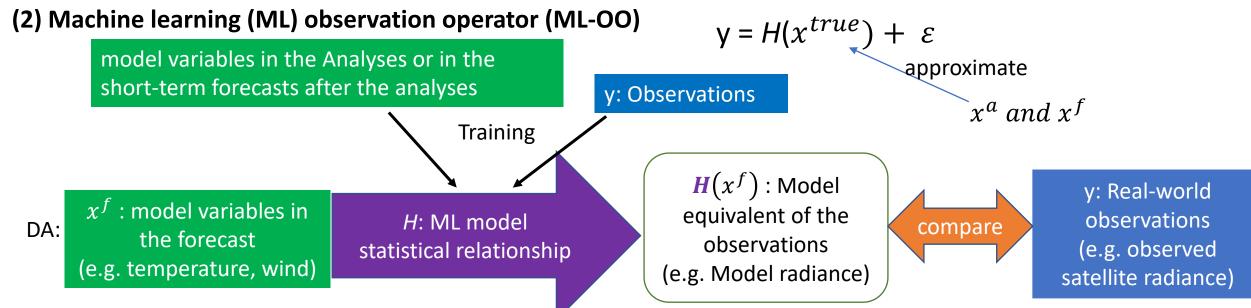
¹Takemasa Miyoshi


¹Data Assimilation Research Team, RIKEN Center for Computational Science

² Meteorological Research Institute, Japan Meteorological Agency


Introduction

$$x^a = x^f + K[y - H(x^f)]$$


Two types of observation operators

(1) Physically-based OO (P-OO)

Issues: (1) P-OO may be time-consuming to develop; (2) bias correction may be needed.

Our goal: To accelerate the usage of new observations, build OO without physically-based model.

Observations

(1) Conventional observations: NCEP PREPBUFR

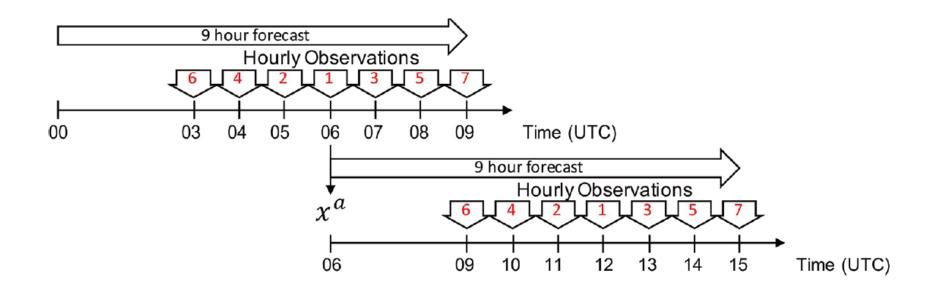
(2) Satellite observations : Brightness temperatures (BT) from the Advanced Microwave Sounding Unit (AMSU-A)

Channel	NOAA-15	NOAA-18	NOAA-19	ΜΕΤΟΡ-Α	METO-B
6		0.3	0.3	0.3	0.3
7	0.3	0.3	0.3	0.3	
8	0.3	0.3		0.3	0.3

standard deviation of the observation error of AMSU-A (unit: K)

Pre-process AMSU-A observations

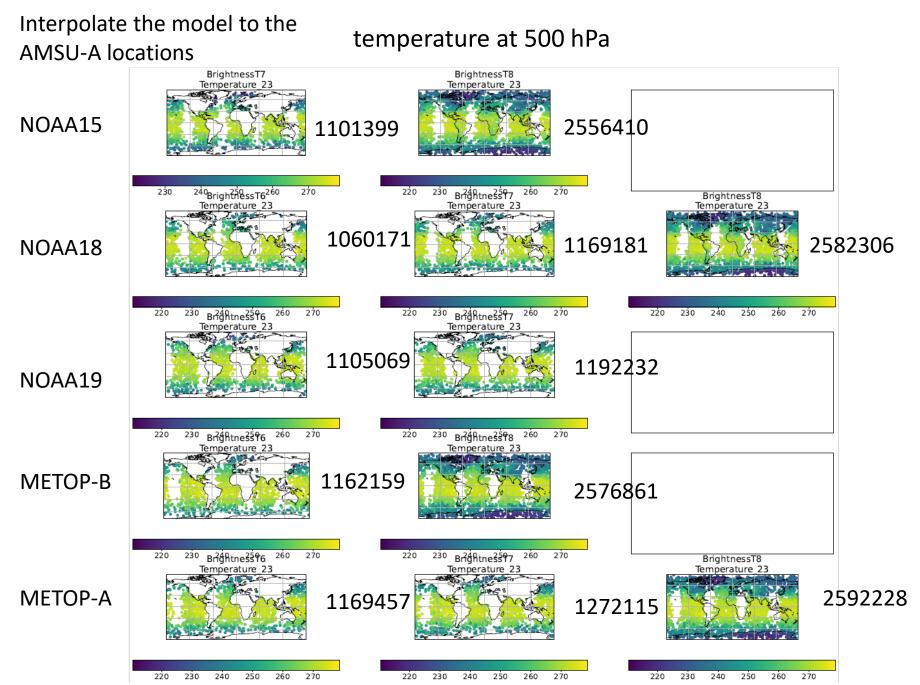
- Data thinning: 250 km. reduce spatial correlations
- Quality control: reduce the impact from cloud and rain. For example, channels 6 and 7 over the land were completely filtered out.
- Gross error checks: filtered out large departure data


Data assimilation system

Model: Non-hydrostatic icosahedral atmospheric model (NICAM)

• 112 km horizontal resolution and 78 vertical levels up to 40 hPa

DA method: Local ensemble transform Kalman filter (LETKF)


- Assimilate conventional observations and satellite radiance every 6 hours
- 64 members
- The relaxation to prior spread (RTPS) is used for covariance inflation
- **No vertical localization** for AMSU-A brightness temperature

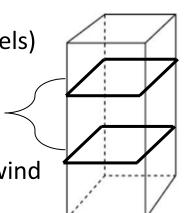
Experiments

	Training experiments		Testing experiments		
	Jan 2015 (DA spin-up)	Feb 2015 (DA cycle)	Jan 2016 (DA spin-up)	Feb 2016 (DA cycle)	
Previous work Liang et al. 2023 JMSJ)	CONV+AMSUA (RTTOV)		CONV+AMSUA (RTTOV)	CONV+AMSUA (RTTOV) + bias correction CONV+AMSUA (ML) CONV	
Current work	CONV		CONV	CONV + AMSUA(RTTOV) + bias correction	
		(1) Interpolate the model to the AMSU-A locations(2) train the ML model		CONV + AMSUA (ML)	
				CONV	
$y = H(x^{true}) + \varepsilon$ approximate $x^{a} \text{ and } x^{f}$ $y = H(x^{true}) + \varepsilon$ $x^{a} \text{ and } x^{f}$ $y = H(x^{true}) + \varepsilon$ $y = H(x^{true}) + \varepsilon$ y =					

Observation coverage in the training data

$y = h_{ml}(x_b, \theta, \emptyset, p) + e_{ml}$ output input

Design of the machine learning models


input

3D variables:

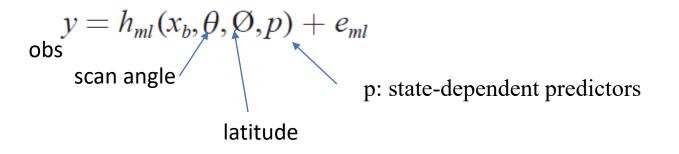
pressure (78 levels) temperature (78 levels) specific humidity (40 levels)

2D variables:

surface pressure surface temperature 10-meter u-wind and v-wind 2-meter temperature 2-m specific humidity

Output: y

satellite brightness temperature from channel 6, 7, 8


8/13

other bias predictor: Satellite zenith angle, Scan angle, latitude

Hyperparameters searching: Deep neural networks (DNNs) for each channel and satellite This **Hidden** layers presentation Input layer activation ReLu ReLu **Output layer** function 205 features, includes 1e-05, 1e-6 learning rate 1e-6 different vertical levels 350 205 250~400 300 Units Layers 2, 3, 4 4

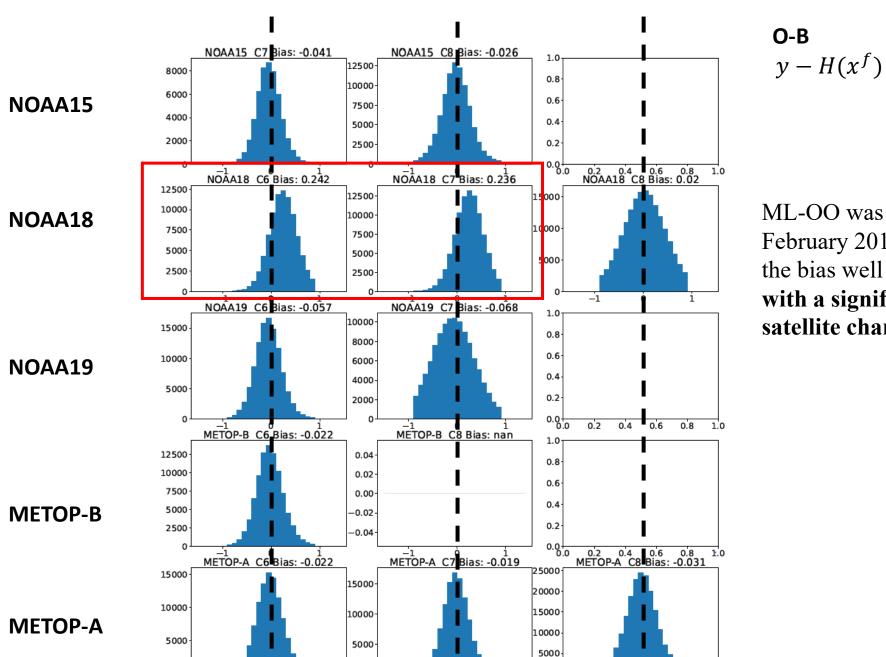
Can ML model handles bias ?

$$y = H(x^{true}) + \varepsilon$$

The ML algorithm minimizes the mean squared error (MSE). The MSE can be decomposed into the variance of the error and the square of the bias

$$E\{[y - h_{ml}(x_b, \theta, \emptyset, p)]^2\}$$

= $Var[y - h_{ml}(x_b, \theta, \emptyset, p)] + bias^2.$

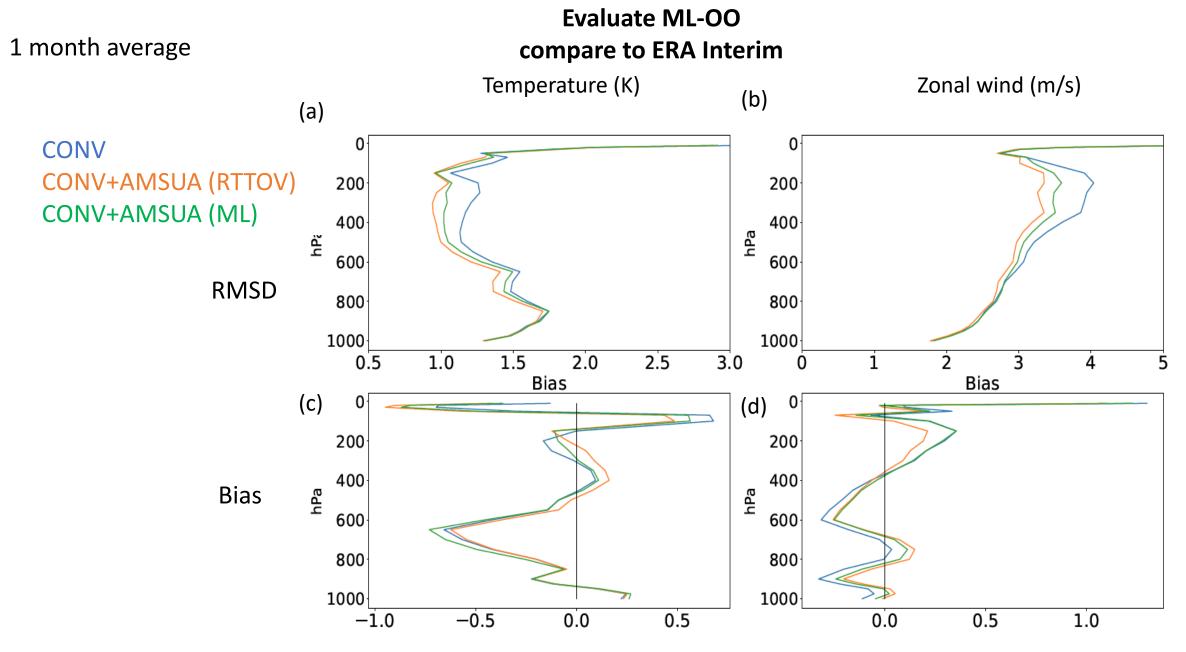

Evaluate the machine learning models

		rmse	bias	r2
NOAA-15	C7	0.205199	-0.00424	0.997418
	C8	0.236601	-0.00244	0.998823
NOAA-18	C6	0.205312	-0.00277	0.998464
	C7	0.22366	-0.00265	0.997381
	C8	0.301168	-0.00483	0.998129
NOAA-19	C6	0.187959	-0.00055	0.998679
	C7	0.371082	0.004732	0.992673
METOP-B	C6	0.195633	0.001825	0.9986
	C8	0.984203	-0.00397	0.980018
METOP-A	C6	0.189656	0.003823	0.998689
	С7	0.204728	0.001413	0.99776
	C8	0.261701	-0.00208	0.998571

- use the test set (20% of all data) to evaluate the performances.
- RMSE and bias **are small**; coefficient of determination (R²) is **high**.
- ML for one channel is not good

Experiments

	Training experiments		Testing experiments		
	Jan 2015 (DA spin-up)	Feb 2015 (DA cycle)	Jan 2016 (DA spin-up)	Feb 2016 (DA cycle)	
Previous work Liang et al. 2023 JMSJ)	CONV+AMSUA (RTTOV)		CONV+AMSUA (RTTOV)	CONV+AMSUA (RTTOV) + bias correction CONV+AMSUA (ML) CONV	
Current work	CONV		CONV	CONV + AMSUA(RTTOV) + bias correction	
		(1) Interpolate the model to the AMSU-A locations(2) train the ML model		CONV + AMSUA (ML)	
				CONV	


-1

-1

1

Bias

ML-OO was based on data from February 2015 and could not treat the bias well in February 2016 with a significant change in satellite characteristics.

 ML-OO (green line) is slightly worse than RTTOV-OO (orange line) but better than only assimilating conventional observations (blue line).

Summary

- 1. Model forecasts and AMSU-A observations were used to train neural networks for generating ML-OO
- 2. Assimilating additional AMSU-A observations using ML-OO shows better performance compared to assimilating only conventional observations, although its performance is slightly inferior than that of RTTOV.
- 3. A separate bias correction procedure may not needed if no significant change in satellite characteristics.
- 4. This data-driven approach **enables earlier assimilation** of satellite data following the launch of a new satellite

Future works

- 1. Evaluate the performance of ML-OO during different time periods.
- 2. Evaluate the feature importance.
- 3. Examine the level of accuracy necessary in the model background to effectively train a robust ML-OO.

Reference

Liang, J., T. Koji, and M. Takemasa, 2023: A Machine Learning Approach to the Observation Operator for Satellite Radiance Data Assimilation. JMSJ, 101, 79–95, <u>https://doi.org/10.2151/jmsj.2023-005</u>.

Poster: Understanding the Dynamics of Venus Atmosphere using Bred Vectors Jianyu Liang (RIKEN R-CCS), Norihiko Sugimoto (Keio University), Takemasa Miyoshi (RIKEN R-CCS)

email: jianyu.liang@riken.jp