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𝑥𝑥𝑎𝑎 = 𝒙𝒙𝒇𝒇 +  𝐾𝐾[𝒚𝒚 − 𝑯𝑯(𝒙𝒙𝒇𝒇)]

Introduction

y: Real-world 
observations 

(e.g. observed 
satellite radiance)

compare
H: Observation 

Operator

𝑥𝑥𝑓𝑓 : model variables 
in the forecast

(e.g. temperature, 
wind)

𝑯𝑯 𝑥𝑥𝑓𝑓  : Model 
equivalent of the 

observations 
(e.g. Model 
radiance)

update

2/13



H: ML model
statistical relationship

Two types of observation operators 

y: Observations

Training

model variables in the Analyses or in the 
short-term forecasts after the analyses

𝑥𝑥𝑓𝑓 : model variables in 
the forecast

(e.g. temperature, wind)

H: Physical model
physical relationship

understand physics

DA:

DA:

𝑯𝑯 𝑥𝑥𝑓𝑓  : Model 
equivalent of the 

observations 
(e.g. Model radiance)

𝑯𝑯 𝑥𝑥𝑓𝑓  : Model 
equivalent of the 

observations 
(e.g. Model radiance)

y: Real-world 
observations 

(e.g. observed 
satellite radiance)

compare

y: Real-world 
observations 

(e.g. observed 
satellite radiance)

compare

𝑥𝑥𝑓𝑓 : model variables in 
the forecast

(e.g. temperature, wind)

(1) Physically-based OO (P-OO)

(2) Machine learning (ML) observation operator (ML-OO)

Issues: (1) P-OO may be time-consuming to develop; (2) bias correction may be needed.

Our goal: To accelerate the usage of new observations, build OO without physically-based model.

y = H(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) +  𝜀𝜀

𝑥𝑥𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑓𝑓
approximate
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(1) Conventional observations: NCEP PREPBUFR
(2) Satellite observations : Brightness temperatures (BT) from the Advanced Microwave Sounding Unit (AMSU-A)

Channel NOAA-15 NOAA-18 NOAA-19 METOP-A METO-B

6 0.3 0.3 0.3 0.3
7 0.3 0.3 0.3 0.3
8 0.3 0.3 0.3 0.3

standard deviation of the observation error of AMSU-A (unit: K)

Observations

Pre-process AMSU-A observations
• Data thinning: 250 km. reduce spatial correlations
• Quality control: reduce the impact from cloud and rain. For example, channels 6 and 7 over the land were 

completely filtered out.   
• Gross error checks: filtered out large departure data
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Model: Non-hydrostatic icosahedral atmospheric model (NICAM)

Data assimilation system

• 112 km horizontal resolution and 78 vertical levels up to 40 hPa

DA method: Local ensemble transform Kalman filter (LETKF)

• Assimilate conventional observations and satellite radiance every 6 hours
• 64 members
• The relaxation to prior spread (RTPS) is used for covariance inflation 
• No vertical localization for AMSU-A brightness temperature
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Experiments
Training experiments Testing experiments

Jan 2015
(DA spin-up)

Feb 2015
(DA cycle)

Jan 2016
(DA spin-up)

Feb 2016
(DA cycle)

Previous work
Liang et al. 
2023 JMSJ)

CONV+AMSUA (RTTOV) CONV+AMSUA (RTTOV) CONV+AMSUA (RTTOV) + bias 
correction
CONV+AMSUA (ML)
CONV

Current work CONV  CONV CONV + AMSUA(RTTOV) + bias 
correction

(1) Interpolate the model to 
the AMSU-A locations 

(2) train the ML model

CONV + AMSUA (ML)

CONV

y = H(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) +  𝜀𝜀

𝑥𝑥𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑓𝑓
approximate
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Observation coverage in the training data

temperature at 500 hPaInterpolate the model to the 
AMSU-A locations 

NOAA15

NOAA18

NOAA19

METOP-B

METOP-A

1101399 2556410

1060171 1169181 2582306

1105069 1192232

1162159 2576861

1169457 1272115 2592228
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Design of the machine learning models 

3D variables: 
pressure (78 levels)
temperature  (78 levels)                           
specific humidity (40 levels)
2D variables: 
surface pressure
surface temperature
10-meter u-wind and v-wind
2-meter temperature
2-m specific humidity
other bias predictor: Satellite zenith angle, Scan angle, latitude

satellite brightness 
temperature
from channel 6, 7, 8

Output: y

Hyperparameters searching:

205 features, includes 
different vertical levels

Deep neural networks (DNNs) for each channel and satellite 

inputoutput

input

This 
presentation

activation 
function

ReLu ReLu

learning rate 1e-05, 1e-6 1e-6

Units 250~400 300

Layers 2, 3, 4 4
8/13



Can ML model handles bias ? 

scan angle 

latitude

p: state-dependent predictors
obs

The ML algorithm minimizes the mean squared error (MSE). 
The MSE can be decomposed into the variance of the error and the square of the bias

y = H(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) +  𝜀𝜀

9/13



Evaluate the machine learning models 

• use the test set (20% of all data) to evaluate the performances.  
• RMSE and bias  are small;  coefficient of determination (R2) is high. 
• ML for one channel is not good 

rmse bias r2
NOAA-15 C7 0.205199 -0.00424 0.997418

C8 0.236601 -0.00244 0.998823
NOAA-18 C6 0.205312 -0.00277 0.998464

C7 0.22366 -0.00265 0.997381
C8 0.301168 -0.00483 0.998129

NOAA-19 C6 0.187959 -0.00055 0.998679
C7 0.371082 0.004732 0.992673

METOP-B C6 0.195633 0.001825 0.9986
C8 0.984203 -0.00397 0.980018

METOP-A C6 0.189656 0.003823 0.998689
C7 0.204728 0.001413 0.99776
C8 0.261701 -0.00208 0.998571
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Experiments
Training experiments Testing experiments

Jan 2015
(DA spin-up)

Feb 2015
(DA cycle)

Jan 2016
(DA spin-up)

Feb 2016
(DA cycle)

Previous work
Liang et al. 
2023 JMSJ)

CONV+AMSUA (RTTOV) CONV+AMSUA (RTTOV) CONV+AMSUA (RTTOV) 
+ bias correction
CONV+AMSUA (ML)
CONV

Current work CONV  CONV CONV + AMSUA(RTTOV) 
+ bias correction

(1) Interpolate the model to 
the AMSU-A locations 

(2) train the ML model

CONV + AMSUA (ML)

CONV
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Bias

O-B
𝑦𝑦 − 𝐻𝐻(𝑥𝑥𝑓𝑓)

NOAA15

NOAA18

NOAA19

METOP-B

METOP-A

ML-OO was based on data from 
February 2015 and could not treat 
the bias well in February 2016 
with a significant change in 
satellite characteristics.
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Evaluate ML-OO 
compare to ERA Interim1 month average

• ML-OO (green line) is slightly worse than RTTOV-OO (orange line) but better than only assimilating 
conventional observations (blue line).

RMSD

Bias

(a) (b)

(c) (d)

CONV
CONV+AMSUA (RTTOV)
CONV+AMSUA (ML)

Temperature (K) Zonal wind (m/s)
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1. Model forecasts and AMSU-A observations were used to train neural networks for generating ML-OO
2. Assimilating additional AMSU-A observations using ML-OO shows better performance compared to 

assimilating only conventional observations, although its performance is slightly inferior than that of RTTOV.
3. A separate bias correction procedure may not needed if no significant change in satellite characteristics.
4. This data-driven approach enables earlier assimilation of satellite data following the launch of a new 

satellite

Summary

Future works
1. Evaluate the performance of ML-OO during different time periods.
2. Evaluate the feature importance.
3. Examine the level of accuracy necessary in the model background to effectively train a robust ML-OO.
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